代码随想录算法训练营DAY47|C++动态规划Part8|198.打家劫舍、213.打家劫舍II、198.打家劫舍III

文章目录

  • 198.打家劫舍
    • 思路
    • CPP代码
  • ⭐️213.打家劫舍II
    • 解决环的问题
    • 思路
    • 总结
    • CPP代码
  • ⭐️198.打家劫舍III
    • 思路
      • 递归三部曲——确定参数和返回值
      • 递归三部曲——确定终止条件
      • 递归三部曲——确定单层遍历的逻辑
    • 打印dp数组
    • CPP代码
    • 暴力递归
    • 记忆化递归

198.打家劫舍

力扣题目链接

文章讲解:198.打家劫舍

视频讲解:动态规划,偷不偷这个房间呢?| LeetCode:198.打家劫舍
状态:由于我们偷当前房屋,肯定会影响后续的偷窃活动,所以本题肯定是动态规划。总体来说本题还不算难,但是非常重要!

这里把题目再抽象一下:

偷钱币的规则——相邻房间不能偷,然后随便怎么偷都行

本题最大的难点就是,虽说相邻房间不能偷,但是剩下的都可以偷,甚至隔好几个房间再偷。那么当前这个房间到底偷不偷呢?这是最关键的点

其实我们当前房间偷不偷本质上依赖于我们前一个房间和前两个房间偷与不偷的状态,如果前一个房间被偷了,那本房间绝对不能偷,如果偷了前两个房间,那么这个房间可以偷也可以不偷,所以当前房间偷不偷和前一个和前两个房间的状态是由关系的,这个关系也就是我们的递推关系。

思路

  • dp数组的含义

我们考虑数组下标i(包含下标i),它所偷的最大的钱币就是dp[i],最终的结果在dp[nums.size() - 1]

  • 递推公式

对于房间i,无非就是偷或者不偷,

如果我们明确要偷i,那么i前面的那个房间是一定不考虑的,所以最多只能考虑到dp[i-2],其中的dp[i-2]表示在i-2(包含)及之前的所有房间所能偷的最大金币数量再加上i房间的金币数量,所以递推公式

d p [ i − 2 ] + n u m s [ i ] dp[i-2]+nums[i] dp[i2]+nums[i]

如果我们明确不偷i,此时我们就可以考虑i-1以及i-1之前的所有房间所能偷的最大金币数量,所以递推公式

d p [ i − 1 ] dp[i-1] dp[i1]

综上所示,递推公式为

dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
  • 初始化

从递归公式可以看出来dp[i]是由dp[i-2]dp[i-1]推导出来的,所以递推公式的基础就是dp[0]dp[1]

很明显dp[0]=nums[0] ,至于dp[1]=max(nums[0], nums[1])

非零和非一下标初始化成0即可

  • 遍历顺序

    这里遍历顺序就很简单了,没什么讲究

for (int i = 2; i < nums.size(); i++)
  • 打印

CPP代码

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[nums.size() - 1];
    }
};

⭐️213.打家劫舍II

力扣题目链接

文章讲解:213.打家劫舍II

视频讲解:动态规划,房间连成环了那还偷不偷呢?| LeetCode:213.打家劫舍II
状态:这里成环的处理逻辑还是很牛逼的,并且非常通用,需要重点解决

本题与198.打家劫舍有什么区别呢?唯一的区看别就是本题把线性数组首尾相连连成环了,这会导致规则有什么样的变化呢?

  • 相邻房间不偷,这是肯定的
  • 首尾元素只能选一个偷。因为本题首尾相连了!

一旦连成环就很容易懵,本题还有起点和终点吗?起点和终点应该如何选呢?

解决环的问题

如果连成环的话,首尾元素如果要选的话只能选择一个,要不选首元素要不尾元素,要不都不选。其实本质上我们可以划分成三个情况,这里拿[1, 6, 1, 9, 1]举例

  • 情况一:不考虑首元素也不考虑尾元素,只考虑中间的[6, 1, 9]数组范围

此时,该数组变成了一个线性数组,所以我们其实可以用线性数组的方式来解决本题,一下就变成了198.打家劫舍

  • 情况二:考虑首元素,不考虑尾元素了,即考虑[1, 6, 1, 9]数组范围。所以本题仍然能变成一个线性数组
  • 情况三:考虑尾元素,不考虑首元素了,即考虑[6, 1, 9, 1]数组范围。所以仍然变成一个线性数组解体

本题中的考虑首位元素并不代表我一定会选择首元素或尾元素,具体的选择是由递推公式决定的

现在再来分析一下这三种情况,从元素情况其实就可以看出,其实情况二和情况三已经包含了情况一的中间元素了。

所以综上所述:我们只要求情况二和情况三的最优解,然后取一个最大值就行

思路

上文中其实已经阐明了大部分的思路,现在我们的情况二和情况三已经是线性数组了,我们只需要把情况二[1, 6, 1, 9]传到我们的198.打家劫舍函数中,然后把情况三传到198.打家劫舍函数,取一个max

总结

我们竟然把一个环形数组的题解耦成了一个线性数组!卡哥牛逼!

CPP代码

// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
        int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
        return max(result1, result2);
    }
    // 198.打家劫舍的逻辑
    int robRange(vector<int>& nums, int start, int end) {
        if (end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];
    }
};

⭐️198.打家劫舍III

力扣题目链接

文章讲解:198.打家劫舍III

视频讲解:动态规划,房间连成树了,偷不偷呢?| LeetCode:337.打家劫舍3

状态:入门级树形dp,需要在二叉树中进行一个状态转移。只能说卡哥太牛逼了,这题的讲解真的是绝

基本规则和198.打家劫舍一样,只不过我们本题中数据结构变成了一个二叉树。

本题如果对二叉树不够了解,对二叉树的遍历不够娴熟的话,基本就是寄。

所以本题的思路也应该是以递归三部曲为主旋律,穿插动态规划五部曲的过程

思路

本文以root=[3, 4, 5, 1, 3, 5, 1]为例,

本题既然是遍历树形结构,那么肯定逃不开递归,所以本质是在单层递归逻辑中采用了动态规划的相关思想。

递归三部曲——确定参数和返回值

参数可能还懵懵懂懂能猜到,肯定是传入根结点!

那返回值是什么呢?dp数组是什么呢?如何融入树形遍历中呢?

首先最主要的问题肯定是解决dp数组的含义,在树形结构的递归遍历中,有一个最基本的思想,也就是不同的遍历方法可以去处理不同的逻辑。本题中,如果我们想偷当前节点,那么相邻结点也就是左右孩子节点肯定不能偷;如果偷左右孩子结点,那么当前节点就不能偷。所以肯定是用后序遍历,因为我们的当前结点的状态只要根据左右孩子的状态来的。

总而言之,这种情况最好的方法就是,用dp数组去定义每个结点的状态。

  • 确定dp数组的含义

每个节点只有两个状态,也就是说节点偷还是不偷,所以用一个长度为2的一维dp数组**dp[0]表示不偷当前节点情况的最大价值,dp[1]表示偷**当前结点情况的最大价值。总而言之就是每一个结点,都存在这样一个dp数组状态

  • dp数组的递推公式

本题使用的是后序遍历的方式,由底向上推,最后就有根结点是偷还是不偷的两个状态,那我们最终的结果就是根结点偷还是不偷的两个状态我们取一个最大值,那这个就是我们最后的结果。

那么我们定义当前节点左右孩子的dp数组状态为leftdprightdp

再回到当前节点偷与不偷,当然选一个dp数组的最大值,所要要定义一个value1表示偷当前结点我们取得的最大钱币,那么如果我们偷了当前结点,那么本节点的左右孩子就一定不能偷了,那么我们要计算不偷左孩子能得到的最大钱币加上不偷右孩子能得到的最大钱币;

int value1 = cur->val + leftdp[0] + rightdp[0]

好了,现在我们必须要考虑偷左右孩子的情况了,如果偷左右任意一个孩子的话,那我们就不能偷当前结点。 再一个,左孩子偷不偷不是由我们去决定的,而是由leftdp[0]leftdp[1]谁大就选哪个;右孩子偷还是不偷也是一样的道理,并且左右孩子是可以同时偷的,因为他们不算相邻结点。所以以代码如下:

int value2 = max(leftdp[0], leftdp[1]) + max(rightdp[0], rightdp[1]);

此时,我得到了两个状态value1value2,value1是我偷当前结点的结果,value2是我不偷当前结点的结果,那么当前状态的偷和不偷就出来了,所以我们返回什么呢?

// 返回当前节点的dp数组
return {value2, value1} //{不偷,偷}

递归三部曲——确定终止条件

if (cur == NULL) return vector<int> (0, 0); //本质上是返回空间的dp数组的状态

如果当前节点是NULL的话,也就是我们此时遍历到了空节点,我们此时偷与不偷其实都是0,所以要返回一个元素都是0的dp数组。

递归三部曲——确定单层遍历的逻辑

我们已经在递归三部曲——确定参数和返回值:确定dp数组的递推公式中讲完了。

打印dp数组

以下图为例:

各个节点的dp数组为:(两列分别为dp[0]、dp[1],行数为后序遍历的顺序)

CPP代码

class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    //长度为2的数组, 0:不偷 1:偷
    vector<int> robTree (TreeNode* cur) {
        if (cur == NULL) return vector<int> {0, 0};
        vector<int> leftDp = robTree(cur->left);
        vector<int> rightDp = robTree(cur->right);

        //偷cur,那么就不能偷左右结点。
        int val0 = cur->val + leftDp[0] + rightDp[0];
        //不偷cur,那么可以偷也可以不偷左右结点,则取较大的情况
        int val1 = max(leftDp[0], leftDp[1]) + max(rightDp[0], rightDp[1]);
        return {val1, val0};
    }
};

暴力递归

这里介绍一下暴力递归的办法,我觉得有利于加深树形dp的理解

int rob(TreeNode* root) {
    if(!root) return 0; //无结点
    if (!root->right && !root->left) return root->val;   //只有根结点

    //偷父节点
    int val1 = root->val;
    if (root->left) val1 += rob(root->left->left) + rot(root->left->right);
    if (root->left) val1 += rob(root->right->left) + rot(root->right->right);

    //不偷父节点
    int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子

    return max(val1, val2);

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( l o g n ) O(logn) O(logn)

记忆化递归

在暴力解法中,由于每个节点被访问多次(每次父节点考虑偷或不偷时),整体时间复杂度是指数级的。

所以我们可以用一个map把计算过的结果保存一下,那么计算过孙子节点,那么计算孩子节点的时候可以复用结果。
最核心的代码:

if (umap[root]) return umap[root];
...
umap[root] = max(val1, val2);
class Solution {
public:
    unordered_map<TreeNode*, int> umap; //记录计算过的结果
    int rob(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right == NULL) return root->val;
        if (umap[root]) return umap[root];  //如果umap里已经有记录了则直接返回

        // 偷父节点
        int val1 = root->val;
        if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left
        if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right
        // 不偷父节点
        int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
        umap[root] = max(val1, val2); // umap记录一下结果

        return max(val1, val2);
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/604130.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小米手机怎么截屏?一篇文章教会你!

我们经常需要截取手机屏幕上的内容&#xff0c;无论是为了分享、教学还是记录。对于小米手机用户来说&#xff0c;掌握截屏技巧不仅能够方便地记录精彩瞬间&#xff0c;还能在需要时轻松分享或保存屏幕内容。小米手机怎么截屏&#xff0c;有哪些截屏方式呢&#xff1f;本文将为…

Remix中使用 Tailwind

如何Remix 中使用 Tailwindcss Remix是通过 Vite 进行构建的&#xff0c;Vite 原生就支持 PostCSS&#xff0c;通过以下几步就可以设置完成 安装 PostCSS 插件 npm install -D tailwindcss autoprefixer添加PostCSS配置文件 ## postcss.config.js export default {plugins:…

深度学习网络:设计、开发和部署

​书籍&#xff1a;Deep Learning Networks: Design, Development and Deployment 作者&#xff1a;Jayakumar Singaram&#xff0c;S. S. Iyengar&#xff0c;Azad M. Madni 出版&#xff1a;Springer书籍下载-《​深度学习网络&#xff1a;设计、开发和部署》该教材为学生和工…

cesium雷达遮罩(轨迹球效果)

cesium 雷达遮罩(轨迹球效果) 以下为源码直接复制可用 1、实现思路 通过修改“material”材质来实现轨迹球效果 2、代码示例 2.1 index.html <!DOCTYPE html> <html lang="en"><head><!

【刷题篇】双指针(二)

文章目录 1、有效三角形的个数2、查找总价格为目标值的两个商品3、三数之和4、四数之和 1、有效三角形的个数 给定一个包含非负整数的数组 nums &#xff0c;返回其中可以组成三角形三条边的三元组个数。 class Solution { public:int triangleNumber(vector<int>& n…

u盘数据突然不见了怎么回事 u盘数据为什么无故不见如何恢复

当我们把文档资料保存好并复制到U盘后&#xff0c;发现刚才保存的资料没了&#xff0c;并且连文档都不见了&#xff0c;不过文件夹还在U盘。那么U盘数据突然不见了怎么回事呢?U盘数据突然不见了怎么办? 一、U盘数据突然不见了怎么回事 有许多原因可能导致u盘数据无故消失&a…

伪装目标检测论文阅读之Dual-SAM(CVPR-2024)

论文&#xff1a;link code&#xff1a;code Fantastic Animals and Where to Find Them:Segment Any Marine Animal with Dual SAM 摘要 作为水下智能的重要支柱&#xff0c;海洋动物分割(MAS)涉及对海洋环境中的动物进行分割。以往的方法在提取长范围上下文特征方面表现不佳…

内存卡突然罢工?数据恢复有高招!

内存卡作为我们日常生活中常见的存储设备&#xff0c;广泛应用于手机、相机等设备中。然而&#xff0c;有时我们会遇到内存卡损坏打不开的情况&#xff0c;这时该如何应对呢&#xff1f;本文将为您详细解析内存卡损坏的原因&#xff0c;并提供有效的数据恢复方案&#xff0c;帮…

PyQt5的基本安装与使用

文章目录 1. 简介2.安装2.1.QtDisigner配置2.2 PyUIC配置2.3. PyRCC配置 3. 一个简单的PyQt5使用示例 1. 简介 PyQt5是一个用于创建交互式界面的Python库&#xff0c;它是基于Qt框架的Python绑定。Qt是一个跨平台的C框架&#xff0c;用于开发图形用户界面&#xff08;GUI&…

4.26.7具有超级令牌采样功能的 Vision Transformer

Vision Transformer在捕获浅层的局部特征时可能会受到高冗余的影响。 在神经网络的早期阶段获得高效且有效的全局上下文建模&#xff1a; ①从超像素的设计中汲取灵感&#xff0c;减少了后续处理中图像基元的数量&#xff0c;并将超级令牌引入到Vision Transformer中。 超像素…

源代码加密的重要性

在数字化时代&#xff0c;企业面临的最大挑战之一是如何保护其核心数据不被泄露。企业源代码防泄密是指企业采取措施保护其软件或应用程序源代码不被未授权的人员获取、泄露或盗用的一种安全措施。源代码是软件的核心组成部分&#xff0c;其中包含了程序员编写的具体指令和算法…

MySQL深入理解MVCC机制(详解)

深入理解MVCC 1、MVCC定义 MVCC:Multi-Version Concurrency Control&#xff0c;多版本并发控制机制。 在mysql中&#xff0c;为了满足事务的四大特性之一的隔离性&#xff0c;就是当前事务中的查询的数据不受其他事务的增删改操作的影响&#xff0c;因此mysql主要是通过这个…

怎么解决端口被占用

目录 一、引言 二、解决方法 一、引言 最近用vscode写网页&#xff0c;老是遇见端口被占用&#xff0c;报错如下&#xff1a; listen tcp :8080: bind: Only one usage of each socket address (protocol/network address/port) is normally permitted. 二、解决方法 1.换…

Apache DolphinScheduler 3.3.0 版本重磅更新提前看!

Apache DolphinScheduler 3.3.0版本终于要在万众期待中发布啦&#xff01;本次发版将有重大功能更新&#xff0c;包括架构上的调整。 为了让广大用户提前尝鲜&#xff0c;社区特别准备了直播活动提前揭秘3.3.0版本中的重要更新&#xff0c;到时候你将会了解到这些信息&#xf…

苹果平板HOME键成历史,全面屏时代到来?2024平板电脑市场趋势分析

近期苹果公司在“放飞吧”发布会上推出了新款iPad Pro和iPad Air平板电脑&#xff0c;并下架了最后一款带有实体Home按键的iPad 9。这一变化标志着Home键在苹果iPad产品线中成为了历史&#xff0c;引起了不少网友的怀念和感慨。 与此同时&#xff0c;今年3月线上平板电脑市场迎…

分析:Palo Alto在从SASE向SASO演进中定位不佳

摘要 我们通过上一篇文章&#xff08;Fortinet的愿景——超越SASE&#xff09;中应用于Fortinet的相同框架来回顾Palo Alto Network在网络和网络安全方面的前景。 SASE涉及数据传输的第一英里。不过&#xff0c;随着SASE的发展&#xff0c;投资者还需要考虑中间和最后一英里。…

QLabel 如何同时显示图片和文字?

效果: align="top"表示图片和文字底部对齐。 img src=":/img/qrc_img.png"表示此图片被添加到qrc的相对路径。 完整: QString content =QString("<html><head/><body><p><img src=\":/img/qrc_img.png\"…

【linux kernel】linux内核hid触摸源码hid-multitouch.c剖析

文章目录 一、内核中通用hid触摸驱动二、probe过程剖析(1)hid_parse()函数(2)hid_hw_start()函数(3)hid_connect()函数三、hid-multitouch.c应用场景一、内核中通用hid触摸驱动 在linux内核中,为HID触摸面板实现了一个通用的驱动程序,位于/drivers/hid/hid-multitouch.c文件…

【高阶数据结构】图--邻接矩阵、邻接表、BFS、DFS、Kruskal、Prime

图--邻接矩阵、邻接表、BFS、DFS、Kruskal、Prime 一、图的概述1、概述&#xff08;纯理论部分&#xff09;2、邻接矩阵&#xff08;实现一个添加边的图&#xff09;&#xff08;1&#xff09;思路介绍&#xff08;2&#xff09;代码部分&#xff08;3&#xff09;测试部分 3、…

pytest教程-40-钩子函数-pytest_runtest_call

领取资料&#xff0c;咨询答疑&#xff0c;请➕wei: June__Go 上一小节我们学习了pytest_runtest_setup钩子函数的使用方法&#xff0c;本小节我们讲解一下pytest_runtest_call钩子函数的使用方法。 pytest_runtest_call 钩子函数在 pytest 调用测试函数&#xff08;即测试用…
最新文章